
Chapter 5

Japanization

There are several ways and levels of japanizing a software product. Some few pro-

ducts sell even without been japanized (mainly computer games and niche-market

products). Japanese EDP specialists are used to work with English products. Howe-

ver the normal Japanese user is (or will not be) satis�ed by using foreign language

software products.

Even if it does not look so, the entry of personal computer systems in Japanese o�ces

was not that long ago. About �ve or seven years ago the most used computer system

in Japan was the mini to main frame range of computers. Since the fast development

of personal computers started, the smaller systems got more powerful to handle the

resource swallowing Japanese features (like Kanji support, . . .).

5.1 First Steps

The �rst step of Japanization is to implement the program on a Japanese hardware

platform. The problem with, e.g., the Japanese PC platforms is that they all have

di�erent hardware layouts and speci�cations compared to an IBM PC. Only " clean "

programs could be transferred and (maybe) used as a plug and play version (e.g., for a

demo) in a Japanese MS-DOS environment. The usual way is to recompile the whole

program with a Japanese version of the compiler. Before that you have to change all

hardware depended BIOS calls and get rid of " dirty " code. You have to do this

because in Japan there are about seven di�erent PC hardware platforms. This makes

163

CHAPTER 5. JAPANIZATION 164

it very di�cult to localize a product which peeks and pokes around in the system. If

you use, e.g., undocumented MS-DOS calls you can not be sure that this call exists

in the Japanese version of a hardware vendor MS-DOS version.

If you have " cleaned up " your program and compiled it on a Japanese hardware

platform you will have an original version of your program which runs on (one)

Japanese hardware platform. This version has the big disadvantage that it does not

support any of the Japanese language specialities.

If it is a special product, e.g., for system administrators or other EDP specialists you

maybe could sell it to Japanese customers.

5.1.1 Adding Japanese features

Some big international companies, like Citibank, use their original programs and add

a Japanese Front End (do not mix this up with Front End Processor). This means

that the program body is not changed, it can not work with Japanese Kana or Kanji

characters. The new Front End provides the Japanese user just with a Japanese user

interface, like Japanese menus and help-screens. The functions of the program are

not changed. This is a way to make it easier for Japanese computer user to use a

program in an international environment. Nevertheless this approach applies only for

big international companies or programs which not have to work with Japanese data.

The most important step in japanizing a software product is to enable it to work with

DBCS characters, i.e., with the Japanese syllable alphabets Hirgana, Katakana and

the ideographic Kanji characters. In order to do this you could create a Japanese, a

Chinese, a Korean, . . . version or you enable your product to run in every national

language DBCS environment (more about that topic later).

If you want to enable your software to work with DBCS character sets, i.e., you have

to use data-types which are able to handle this type of characters (like the wchar t

data-type in C or other speci�c Japanese data-types provided by the compiler maker).

After doing this there are two ways to choose from. You could launch the �rst version

of your DBCS enabled program without changing the menus and help-screens, just

by adding a Japanese manual. The second, more complicated, way is, not only to

enable your product to handle Japanese characters, but also to adapt the manual,

menu and help system to the Japanese language. The �rst way could be a good choice

CHAPTER 5. JAPANIZATION 165

if you just want to be present on the Japanese market and later on (if the product

seems to be successful) you want to launch a " more " japanized version.

It is clearly visible that the version with DBCS support, japanized menus and help-

screens will be more successful in the Japanese marketplace. For the beginning or for

niche-market products a version with DBCS support and, e.g., English menus would

also sell.

5.1.2 Full Japanization

The last stage in japanizing a software product is to adapt all cultural Japanese

specialties which apply for this product. For a word processor this would be things

like Amikake, Keisen, Kinsoku Shori, Rubi characters, Kinto-waritsuke and so on. If

you japanize a real estate agent program the Japanese user would appreciate if the

system would support the Japanese units for measuring the
oorspace (e.g., Tsubo).

It is naturally that everybody likes to work in well know environment. Imagine a

Japanese user who has to work with, e.g., a program which prints the date in the

US date format (MM/DD/YY). This is just a minor di�erence but it could cause

misunderstanding. In addition the user could not use the system to prepare papers

for the government because they insist on the Japanese date format.

If you support all the other small cultural di�erences it will help your system to

compete on the Japanese software market.

5.1.3 Japanese Operating Systems

To give the appropriate support for the Japanese user the operating system has to

support several features. First of all the Japanese user will appreciate if he could use

�le, volume and device names written either in Hiragana, Katakana or Kanji charac-

ters. Furthermore a complete help system and error messages in Japanese should be

available.

For applications, commands and programming languages it is necessary to provide

the possibility to write comments and the names of variables in Japanese. In addition

it should be possible to use special Japanese data-types (for DBCS characters). A

nice feature would be that reserved words could be written in Japanese.

CHAPTER 5. JAPANIZATION 166

5.2 Japanese Software Environment

The PC/WKS market will become the most important market in Japan. The two

leading operating systems are MS-DOS and UNIX. Both are existing in japanized

versions. The PC market is a very diverse market with many di�erent hardware

platforms and implementations of MS-DOS. Since the MS-Windows market share in

Japan is growing the di�erence between the operating systems has started to fade

away.

The UNIX workstation market is more homogeneous. Even if there are di�erent hard-

ware platforms and UNIX implementations. The di�erent UNIX operating systems

implementations, which are always licensed by the UNIX Systems Laboratory, uses

all the same program interface. So if you use a UNIX system there should be only

minor problems in adapting a software to this environment (at least less then in the

Japanese MS-DOS environment).

5.2.1 MS-DOS

The Japanese DOS market is a mess (!). There are several vendors which o�er their

hardware with MS-DOS. Unfortunately each platform has a di�erent hardware layout

and implementation of MS-DOS. The best example is the market leader NEC with the

PC98XX series. This machine uses an architecture which is similar to the architecture

of the IBM PC. Nevertheless the machines are incompatible because the engineers

of NEC used, e.g., di�erent hardware addresses for controller chips, placed other

interrupt routines behind interrupts as IBM did and designed a more complex video

memory design for the handling of Japanese characters. NEC is not the only vendor

who did this. All of the other vendors (like Fujitsu, Toshiba, . . .) did the same thing.

Moreover the mess of di�erent implementations there are also many di�erent FEPs

for PCs available in Japan. If your program was developed by using, e.g., the VJE-�

then you can not be sure that an other FEP supports the same features as this FEP.

Switching or controlling the mode of the FEP is not possible except this feature are

provided by the standard FEP interface.

CHAPTER 5. JAPANIZATION 167

Clean Programs

The only programs which should run on every MS-DOS machine are really " clean "

programmed programs. This means that you only could use the fully documented

MS-DOS calls. If you use undocumented DOS calls, BIOS calls, your system peeks

& pokes around or you try to manipulated the hardware directly your system will

probably not run on a Japanese MS-DOS machine. This has caused many obstacles

for software developers in and outside Japan. For every hardware platform you have

to code a special version or if you would use the standard MS-DOS interface your

program would be slower or could not perform some special program features. This

was and is the main hurdle for foreign software vendors.

Japanese MS-DOS

The good thing about the Japanese MS-DOS is that it is fully japanized and sup-

ports many the Japanese special cultural features. The help-system provides the

help-screens in Japanese (see �gure 5.3 on page 176). The system allows to use �le

names written in Japanese (see �gure 5.4 on page 179). There are many successful

business applications available in japanized versions (see the picture of LOTUS 123j

in �gure 5.4 on page 179). Even with the bunch of hurdles and problems the system

is the best choice for running PC software on Japanese PC systems.

AX & OADG DOS

Fortunately there are two new versions of the PC operating system around which try

to make it easier for the user and the software developers to run programs on di�erent

platforms. These new DOS versions are from the AX Consortium and from the OADG

(Open Architecture Development Group, called DOS/V). Both DOS versions run on

di�erent platforms from di�erent vendors. Both systems support special Japanese

features like FEP, Kanji characters, The good thing about this new approach is

that a program developed on an AX (or OADG) DOS machine should run on every

other AX (or OADG) DOS machine. It is still not possible to peek and poke around

or manipulate the hardware directly1, but at least all the DOS calls follow one (AX

1You should not do it, but AX machines have all the same hardware architecture so it should be

fairly possible to run a " dirty " programmed AX program on every AX compatible machine

CHAPTER 5. JAPANIZATION 168

or OADG) standard. The latest developments show that both systems will become

compatible to each other in the near future.

Japanese Windows

The biggest boost for PC software compatibility, on di�erent platforms, was the

Japanese MS-Windows version 3.0 (see �gure 5.3 on page 176). This version of MS-

Windows was still implemented by each hardware vendor, but all implementations

use the same set of windows APIs (Application Program Interface). In addition the

Japanese window's version is compatible to the English (German, French, . . .) win-

dow's version. The only problem with the compatibility between the di�erent national

versions is that national characters or line elements will be displayed as Katakana

characters by the Japanese window's version.

This fact makes it easy to run foreign software in a Japanese computer environment.

If the programmer has used the wide-character supporting windows APIs the main

work of localization is already done. The only minor di�erence between the Japanese

window's version is that each vendor has used his own technical denotation.

5.2.2 UNIX

In the workstation world UNIX is still the most used operating system. In Japan

nearly every hardware vendor o�ers a UNIX based workstation line. This market

is so important that SUN o�ers (only in Japan) a Laptop version of their SPARC

based machines. This combines the power of a real UNIX workstation and the highly

demanded space saving size of a Laptop.

The advantage of the UNIX operating system is that all vendors who want to imple-

ment a version of UNIX have to buy a license from the UNIX System Laboratory.

This causes that all the implementations are based on the same source. In addition it

is more common in the UNIX environment to have (or use) clear documented inter-

faces. Since a couple of years the development of the UNIX system moves towards an

open system environment which relies heavily on standard communication protocols

and interface descriptions.

UNIX is some kind of a layered operating system. That leads towards a simple ap-

proach of adding country speci�c extras. I will talk about the approach from USL

CHAPTER 5. JAPANIZATION 169

(UNIX System Laboratory) and the implementation from HP. UNIX adds to the

base operation system a layer which is called Multi National Language Supplement

(or MNLS, [13], [16]). This layer includes the basic functions to support di�erent

national computer environments (see �gure 5.1 on page 169). This features are called

UNIX System V

Multi National Language Supplement

Japan
National Lang.

Supplement

Country X
National Lang.

Supplement

. . .

Figure 5.1: UNIX System V Layers

internationalization features and include :

� support of full 8-bit code sets. Commands are able to handle 8-bit code sets

and EUC code sets.

� alternative date and time formats are supported

� enhanced support for conversion functions like upper and lower casing

� extended set of classi�cations for characters like alphabetic, printable, upper

and lower case, . . .

� ANSI C libraries which support the internationalization features like message

handling, EUC2 and multi-byte processing

� multi lingual message handling for retrieving messages during runtime for ap-

plications and commands

� character mapping

On top of this layer sits the Country Speci�c Product (called CSP). For the Japanese

Unix environment exist a special CSP. This covers the main Japanese di�erences and

2Extended Unix Code

CHAPTER 5. JAPANIZATION 170

applies, e.g., for the character set mapping, FEP, The MNLS system of UNIX

works mainly with the ANSI C compiler. The system is controlled by an environment

variable called LANG. If this variable set to the Locale of a speci�c country (like

ja JP.sjis or ja JP.euc for Japan) the system will (or should) perform all operations

following the national pro�le for this country ([5]). Naturally it will perform this only

if the program or command is written by using the localization functions of the ANSI

C compiler. The locale contains the following categories (environment variables, [13]):

� LC CTYPE character classi�cation and conversion

speci�es a di�erent character class table (if de�ned)

� LC TIME date and time format

contains the information about date and time format

� LC NUMERIC Numeric representation

speci�es the decimal point character and thousands separator

� LC COLLATE collating sequence

holds the information about the sort order

� LC MONETARY monetary information

information for the monetary sign, positive and negative values

� LC MESSAGES language in which the messages should be retrieved

holds the information about the directory where the system messages will be

found

Usually this categories are de�ned by a national body via the national country pro�le

for UNIX. If a system command or application uses the ANSI C localization functions

the system will behave following the national pro�le. That means that, e.g., the

date or time function will deliver the output following the national speci�cations

(standard). In addition all messages (if available) will be displayed in the national

language. Country speci�c specialities as sort order or other conventions covered by

the categories will also be performed following the national pro�le.

The national pro�le contains (or should contain) all of this country speci�c speciali-

ties. Once this work is done it makes it very easy to localize (or japanize) the basic

CHAPTER 5. JAPANIZATION 171

local di�erences in a UNIX environment. By setting the environment variable LANG

from de DE.src (for Germany) to ja JP.sjis (for Japan) the representation or infor-

mation about of time, date, money, numbers, messages, conversion & classi�cation

functions, sort order and character classi�cation should change from the German

de�nition to the Japanese ([5]).

As you may recognize there are two settings for the environment variable LANG

available in Japan. The ja JP.sjis applies for an environment which works with the

Shift JIS code table. The ja JP.euc applies for the more
exible EUC code table.

As alluded before the ANSI C compiler supports wide-characters through the data

type wchar t. In addition you will �nd conversion & classi�cation and string handling

functions for wide-characters (and multi-byte characters).

Shift-JIS was already introduced so I will now talk about the EUC character mapping.

The EUC is spilt into four groups of code sets. The code set No. 0 is always mapped

to the standard SBCS ASCII character set. With the EUC character mapping it is

possible to handle multi-byte character sets with a (theoretical) unlimited number of

bytes (practical values are 1 & 2 bytes and for Asian languages up to four bytes, [14],

[13]). To distinguish between the di�erent code sets the EUC uses the MSB or the two

single shift codes SS2 and SS3 (for the code set 2 and 3). The value of SS2 is 8EHex

and for SS3 is 8FHex following the standards ISO 2022 and ISO 6937/3. In order

to tell the system which code set is mapped to which type of multi-byte character

set and the width of the characters in the set you could use a system function called

cswidth.

The EUC uses two representations, the internal and the external code. The internal

code is used to store the characters in memory. For the input / output the external

code is used. These codes are called the EUC representation and the wide character

representation. The wide character representation is available in a 16-bit and a 32-bit

form (see the table's 5.1, 5.2 and 5.3 starting from page 177).

The advantage of this system is that it is able to handle di�erent character sets with

a theoretically unlimited number of bytes. In the tables the following examples are

shown :

� one byte for the character set (a, in code set two and three with single shift

character)

CHAPTER 5. JAPANIZATION 172

� two byte for the character set (b, in code set two and three with single shift

character)

� three byte for the character set (c, in code set two and three with single shift

character)

Furthermore the system o�ers a variety of multi-byte supporting functions like :

� character I/O

� string I/O

� formatted I/O

� string manipulation

� string conversion

In this environment it is possible to write truly internationalized applications. In

the Japanese version the EUC is mapped to the following standard character sets

(see table 5.4 on page 178). The escape sequences in this table are following the

recommendation of the ISO 2022:1986 (JIS X0202-1991) standard. As you see it is

possible to map all Japanese standard character sets to the EUC. This gives us a

character set which could be used through out all UNIX platforms. And makes it

easier to port software from one UNIX system to an other UNIX system.

Through the consistence of this approach all levels of the UNIX operating system are

enabled to work in di�erent national language environments.

NLS

As we read does UNIX make the localization a little bit easier then it is in the MS-

DOS PC environment. I want now introduce the Native Language Support (NLS)

from HP. The HP UNIX supports through NLS twenty-two di�erent native language

environments. The most interesting part is that it supports all Asian languages ([17]).

In the next paragraphs I will explain the approach which HP uses. This approach

is based on the MNLS features of UNIX. It not only replaces standard C routines,

it also comes with a set of tools which are helpful to maintain and construct locales

CHAPTER 5. JAPANIZATION 173

and message catalogs. The approach behind the NLS is to work with a single source.

If you want to produce di�erent national (localized) versions of a program you could

create for each country an own version. This was the way the most software developers

have chosen in the past. Actually it is silly to work on several di�erent sources for

each supported country. You never keep track of the enhancement in all versions.

The better way is to work just with one source and let the system do the localization

(at runtime). As mentioned above the MNLS and the CSP allows to create a generic

program. For the locale specialities the system takes care of. Naturally the system

needs the country speci�c pro�le which contains the information's about the national

language environment.

If you got a Japanese national pro�le there is no problem to run your program in

a Japanese environment. In order to use one source you have to remove all strings

from the program. Instead of �xed strings you use function calls which retrieve the

appropriate string from a message catalog. Controlled by the LANG environment

variable (and/or LC MESSAGES) the system uses either the default string (if the

message catalog in not available) or the appropriate string from the message catalog

in the national language.

Before you can use the national language message catalog you have to create one.

For each language that you want to support you have to create a message catalog.

For example you write the program using English default messages and later on you

translate the message catalog to French, German or Japanese. This makes it very easy

to localize an application because you just have to change or create a set of strings

in the locale language. In addition it allows you to maintain just one source of the

program. This makes it much easier for the further development and maintenance of

the program.

You will �nd a rough skeleton for a " normal " program and a program which follows

the NLS guidelines in �gure 5.2 on page 174. The di�erence between the programs is

that the " normal " program uses �xed strings for messages. The NLS program instead

checks the LANG environment variable �rst. After that it opens the appropriate

message catalog. If it is not possible to open the message catalog the NLS program

uses the default strings. When the message catalog is available the system retrieves,

during runtime, the messages in the language of the national environment. Before the

program terminates it should close the message catalog.

CHAPTER 5. JAPANIZATION 174

output message
. . .

Get LANG information

open message catalog

output message(LANG)

close message catalog

Figure 5.2: NLS program skeleton

This has the big advantage that there is only one source to maintain. To create a

program for a certain national environment you need only the national pro�le and a

message catalog in the national language.

The HP-UX NLS provides you with several tools to exclude the text strings from the

program source, to create (a kind of precompiled) message catalog and several library

routines for the conversion, I/O and string handling. The main part which controls

the I/O for X window, terminal and printer is called NLIO (National Language Input

Output). This part of the NLS provides the system with the country speci�c character

I/O routines so that, e.g., X windows becomes capable to handle Japanese character

I/O. If a certain national pro�le is not supported by the NLS it is possible to create

a new Loacle for this language environment.

5.2.3 MS-DOS vs. UNIX

At the moment it looks like that UNIX has the leading edge in supporting localization.

MS-DOS is widely spread in the Japanese computer world but it has many obstacles

and hurdles for foreign programmers who wish to japanize software. UNIX is much

more advanced in this point but it has a smaller market share then MS-DOS. In next

couple of years the problems of japanizing software will not totally fade away but it

will become much easier to do. Both operating systems move towards a more open

and internationalized (globalized) approach. This means that in the near future, both

will support localization features even in the basic version.

At the moment it is necessary to create a separate program version for each DOS

CHAPTER 5. JAPANIZATION 175

hardware platform. This could change in the near future when the new DOS versions

(AX & OADG) become more widely spread.

In the UNIX world it is absolutely necessary to work out a standard for the localiza-

tion of applications. The emerging open systems technology would not work between

di�erent national UNIX systems if they would not use a common scheme for the

realization of local UNIX versions.

As you see it is essential to work towards a localization standard on both operating

systems. The best way of doing this would be to establish a standard across all

operating systems.

CHAPTER 5. JAPANIZATION 177

Set EUC Code

0 0XXXXXXX

1 (a) 1XXXXXXX

(b) 1XXXXXXX 1XXXXXXX

(c) 1XXXXXXX 1XXXXXXX 1XXXXXX

2 (a) SS2 1XXXXXXX

(b) SS2 1XXXXXXX 1XXXXXXX

(c) SS2 1XXXXXXX 1XXXXXXX 1XXXXXXX

3 (a) SS3 1XXXXXXX

(b) SS3 1XXXXXXX 1XXXXXXX

(c) SS3 1XXXXXXX 1XXXXXXX 1XXXXXXX

Table 5.1: EUC representations, External Code

Set 16-bit Process Code

0 000000000XXXXXXX

1 (a) 100000001XXXXXXX

(b) 1XXXXXXX1XXXXXXX

2 (a) 000000001XXXXXXX

(b) 0XXXXXXX1XXXXXXX

3 (a) 100000000XXXXXXX

(b) 1XXXXXXXX0XXXXXX

Table 5.2: EUC representations 16-bit, Internal Code

CHAPTER 5. JAPANIZATION 178

Set 32-bit Process Code

0 0000000000000000000000000XXXXXXX

1 (a) 0011000000000000000000000XXXXXXX

(b) 001100000000000000XXXXXXXXXXXXXX

(c) 00110000000XXXXXXXXXXXXXXXXXXXXX

2 (a) 0001000000000000000000000XXXXXXX

(b) 000100000000000000XXXXXXXXXXXXXX

(c) 00010000000XXXXXXXXXXXXXXXXXXXXX

3 (a) 0010000000000000000000000XXXXXXX

(b) 001000000000000000XXXXXXXXXXXXXX

(c) 00100000000XXXXXXXXXXXXXXXXXXXXX

Table 5.3: EUC representations 32-bit, Internal Code

Set Escape Sequence Character Set

0 ESC (B or ASCII (ANS X3.4-1968) or

ESC (J JIS X0201-1976 Roman

1 ESC & @ ESC $) B JIS X0208-1990 Kanji

2 ESC * I JIS X0201-1976 Katakana

3 ESC $ + D JIS X0212-1990 Supplemental Kanji

Table 5.4: Japanese EUC mapping

([15], [16])

CHAPTER 5. JAPANIZATION 180

5.3 Ways of Japanization

The way of japanizing a product is always depending on the type of computer system

or software you want to " japanize ". On the following pages you will �nd a kind of

japanization pathway.

Only some program's (in an English or foreign language version) will be a good

seller in Japan without adapting to the local environment. In order to increase the

acceptance and sales of the software product you have to do at least some adaptation

to the Japanese environment. There are several steps to a fully japanized software

package, like :

� A Japanese translation of the manuals, done by a Japanese native speaking

technical translator. Sometimes it is helpful to let someone else retranslate the

documentation to check the translation of the �rst translator (see [20]). Besides

that it is useful to check the technical terms which are used on the speci�c

platform (e.g., NEC, Toshiba, Fujitsu). This could be considered as the �rst

step to launch a product in Japan. Some special technical applications, which

use well known English denominations, do not require more japanization to sell

on the Japanese market.

� Enabling the software to work with Japanese characters (Hiragana, Katakana

and Kanji) will de�nitely increase the acceptance of a foreign software product

in Japan. For the most program's it is essential that they are enabled to work,

display and accept input of Japanese characters. It is possible to write Japanese

words in roman characters (Romaji) but the Japanese user will really not be

satis�ed (similar, for example, to Germany : you can write German umlauts as

ae, ue, oe but a German user will not be satis�ed to read his name in a di�erent

spelling).

� Additional to enabling the software to work with Japanese characters you also

should change the program menus and on-line helpscreens. This is a main boost

to the software sales in Japan. A Japanese user will be pleased to see a fully

japanized foreign software package so that he will consider to buy it. If he has

to struggle with a foreign software package, which is not in his own language

CHAPTER 5. JAPANIZATION 181

he will rather go for a Japanese software package even if it is not so highly

developed or sophisticated as the foreign product.

� The highest stage of japanization is to include all the small cultural di�erences

(e.g., date convention, vertical writing, . . .). This will show the Japanese user a

high commitment of the software developer. This could be the small di�erences

which could in
uence the Japanese buyer to buy a foreign software package

instead of a Japanese program.

Not only program modi�cations or translations of the manuals are required for a

successful competition in the Japanese software market, but also there are some

other things which are also quite important :

� Bug free as possible is a major requirement. The Japanese user is not willing

to accept major bugs in a program. American or European users are willing to

accept bugs because error free is considered as ideal state which is usually not

expected and these users are able to cope with that.

� Full, in the most cases for the warranty time free, support is expected from

Japanese users. Hotlines, bulletin boards or even salesmen who visit their clients

are some ways of support in Japan. If a customer calls your o�ce a salesman

or support sta� should help him or call back and help to solve the problem.

� Customer training is also expected in Japan. If it is not provided in the form of

seminars or classes, it should be provided as computer based training, video or

laserdisc course. Sometimes written tutorials are provided with the manuals.

� Some users expect customization or advice for the development of customized

applications from the software vendor.

If you show a high commitment to your Japanese customers and provide a good

support for the program and for special Japanese features you truly will have a good

chance to succeed in the Japanese market place. It is not easy to adapt a program to

all the necessary features but the reward will be high.

